Муниципальное бюджетное общеобразовательное учреждение Титовская средняя общеобразовательная школа

«УТВЕРЖДАЮ» директор МБОУ Титовской СОШ: ______ Артамонов С.П. Приказ от 29.08.2015 г. № 104

РАБОЧАЯ ПРОГРАММА

по информатике

Уровень общего образования: среднее общее, 9 класс

2015-2016 учебный год

Количество часов – 64

Учитель Кармазина Нина Петровна

Рабочая программа разработана на основе базисного плана 2004 года, примерной программы основного общего образования «Информатика и ИКТ» 8 класс (базовый уровень) автор Н.Д. Угринович и федерального компонента государственного стандарта общего образования.

сл. Титовка

2015 год.

Пояснительная записка

Настоящая программа составлена на основе «Примерной программы основного общего образования по информатике и ИКТ (утверждена приказом Минобразования России от 09.03.04. № 1312) и рассчитана на изучение базового курса информатики и ИКТ учащимися 8-9 классов в течении 102 часов (в том числе в VIII классе - 34 учебных часа из расчета I час в неделю и в IX классе - 68 учебных часов из расчета 2 часа в неделю). Программа соответствует федеральному компоненту государственного стандарта основного общего образования по информатике и информационным технологиям.

Общая характеристика учебного предмета.
Информатика – это наука о закономерностях протекания информационных процессов в системах различной природы, о методах, средствах и технологиях автоматизации информационных процессов. Она способствует формированию современного научного мировоззрения, развитию интеллектуальных способностей и познавательных интересов школьников; освоение базирующихся на этой науке информационных технологий необходимых школьникам, как самом образовательном процессе, так и в их повседневной и будущей жизни.

Приоритетными объектами изучения в курсе информатики основной школы информационные процессы информационные выступают технологии. И строится раскрытия Теоретическая часть курса основе содержания на информационной технологии решения задачи, через такие обобщающие понятия как: информационный процесс, информационная модель и информационные основы управления.

Практическая же часть курса направлена на освоение школьниками навыков использования средств информационных технологий, являющееся значимым не только для формирования функциональной грамотности, социализации школьников, последующей деятельности выпускников, но и для повышения эффективности освоения других учебных предметов.

Курс нацелен на формирование умений фиксировать информацию об окружающем мире; искать, анализировать, критически оценивать, отбирать информацию; организовывать информацию; передавать информацию; проектировать объекты и процессы, планировать свои действия; создавать, реализовывать и корректировать планы.

Цели и задачи:

Изучение информатики и информационных технологий в основной школе направлено на достижение следующих целей:

- освоение знаний, составляющих основу научных представлений информации, информационных процессах, системах, технологиях и моделях;
- овладение умениями работать с различными видами информации с помощью компьютера и других средств информационных и коммуникационных технологий (ИКТ), организовывать собственную информационную деятельность и планировать ее результаты;
- развитие познавательных интересов, интеллектуальных творческих способностей средствами ИКТ;

- **воспитание** ответственного отношения к информации с учетом правовых и этических аспектов ее распространения; избирательного отношения к полученной информации;
- **выработка навыков** применения средств ИКТ в повседневной жизни, при выполнении индивидуальных и коллективных проектов, в учебной деятельности, дальнейшем освоении профессий, востребованных на рынке труда.

Основная задача состоит в изучении **общих закономерностей функционирования, создания и применения** информационных систем, преимущественно автоматизированных.

В практике используются три формы организации работы на уроке:

- индивидуальные;
- групповые;
- индивидуально-групповые;
- фронтальные;
- практикумы.

В качестве методов обучения применяются:

- словесные методы (рассказ, объяснение, беседа, дискуссия, лекция, работа с книгой),
- наглядные методы (метод иллюстраций, метод демонстраций),
- практические методы (упражнения, практические работы).

Место учебного предмета в учебном плане.

Согласно федеральному базисному учебному плану для образовательных учреждений Российской Федерации на изучение информатики на ступени основного общего образования отводится 68 ч из расчета 2 ч в неделю. Рабочая программа в 9 классе на 2015-2016 учебный год по календарному учебному графику рассчитана на 64 урока.

Содержание учебного курса

Кодирование и обработка графической и мультимедийной информации

Кодирование графической информации (пиксель, растр, кодировка цвета, видеопамять). Растровая и векторная графика. Интерфейс и основные возможности графических редакторов. Растровая и векторная анимация. Кодирование и обработка звуковой информации. Цифровое фото и видео

Практические работы:

Практическая работа № 1.1. Кодирование графической информации.

Практическая работа № 1.2. Редактирование изображений в растровом графическом редакторе.

Практическая работа № 1.3. Создание рисунков в векторном графическом редакторе.

Практическая работа № 1.4. Создание GIF и Flash-анимации.

Практическая работа № 1.5. Кодирование и обработка звуковой информации.

Практическая работа № 1.6. Захват и редактирование цифрового фото и создание слайд-шоу

Кодирование и обработка текстовой информации

Кодирование текстовой информации. Создание документов в текстовых редакторах. Ввод и редактирование документа. Сохранение и печать документов. Форматирование документа. Таблицы. Компьютерные словари и системы машинного перевода текстов. Системы оптического распознавания документов.

Практические работы:

Практическая работа № 2.1. Кодирование текстовой информации

Практическая работа №2.2. Вставка в документ формул

Практическая работа №2.3. Форматирование символов и абзацев

Практическая работа №2.4. Создание и форматирование списков

Практическая работа №2.5. Вставка в документ таблицы, ее форматирование и заполнение данными

Практическая работа №2.6. Перевод текста с помощью компьютерного словаря Практическая работа №2.7. Сканирование и распознавание «бумажного» текстового документа

Кодирование и обработка числовой информации

Кодирование числовой информации. Представление числовой информации с помощью систем счисления: арифметические операции в позиционных системах счисления, *двоичное кодирование чисел в компьютере. Электронные таблицы: основные параметры электронных таблиц, основные типы и форматы данных, относительные, абсолютные и смешанные ссылки, встроенные функции. Построение диаграмм и графиков. Базы данных в электронных таблицах.

Практические работы:

Практическая работа №3.1. Перевод чисел из одной системы счисления в другую с помощью калькулятора

Практическая работа №3.2. Относительные, абсолютные и смешанные ссылки в электронных таблицах

Практическая работа №3.3. Создание таблиц значений функций в электронных таблицах

Практическая работа №3.4. Построение диаграмм различных типов

Практическая работа №3.5. Сортировка и поиск данных в электронных таблицах

Основы алгоритмизации и объектно-ориентированного программирования

Алгоритм и его формальное исполнение: свойства алгоритма и его исполнители, блок-схемы алгоритмов, выполнение алгоритмов компьютером. Кодирование основных типов алгоритмических структур на объектно-ориентированных языках и алгоритмическом языке: следование, ветвление, цикл. Переменные: тип, имя, значение. Арифметические, строковые и логические выражения. Основы объектно-ориентированного визуального программирования. Функции в языках объектно-

ориентированного и алгоритмического программирования. *Графические возможности объектно-ориентированного языка программирования Visual Basic 2005.

Практические работы:

Практическая работа №4.1. Знакомство с системами объектно-ориентированного и алгоритмического программирования

Практическая работа №4.2. Проект «Переменные»

Практическая работа №4.3. Проект «Калькулятор»

Практическая работа №4.4. Проект «Строковый калькулятор»

Практическая работа №4.5. Проект «Даты и время»

Практическая работа №4.6. Проект «Сравнение кодов символов»

Практическая работа №4.7. Проект «Отметка»

Практическая работа №4.8. Проект «Коды символов»

Практическая работа №4.9. Проект «Слово-перевертыш»

Формализация и моделирование

Окружающий мир как иерархическая система. Моделирование, формализация, визуализация. Материальные и информационные модели. Основные этапы разработки и исследования моделей на компьютере. Построение и исследование физических моделей. Приближенное решение уравнений. Экспертные системы распознавания химических веществ. Информационные модели управления объектами

Практические работы:

Практическая работа 5.2. Проект «Графическое решение уравнения»

Практическая работа 5.3. Проект «Распознавание удобрений»

Практическая работа 5.4. Проект «Модели систем управления»

Информатизация общества

Информационное общество. Информационная культура. Перспективы развития информационных и коммуникационных технологий.

Тестирование:

Информатизация общества.

Порядок, формы и периодичность текущего контроля знаний, умений, навыков, промежуточной и итоговой аттестации учащихся.

Виды и формы текущего, промежуточного и итогового контроля учащихся проводятся согласно локальному акту «Положение о текущем контроле, успеваемости и промежуточной аттестации обучающихся МОУ Титовская СОШ» n.2.2.

<u>Текущий контроль</u> успеваемости осуществляется учителями на протяжении всего учебного года и представляет собой процедуру проверки знаний учащихся в соответствии с образовательной программой соответствующего уровня, обеспечивает оперативное управление обучением учащихся и его корректировку.

Промежуточная аттестация проводится в 9 классе - по четвертям.

Формы контроля качества усвоения содержания учебных программ обучающихся.

<u>Письменная проверка:</u> письменный ответ обучающегося на один или систему вопросов (заданий), домашние, проверочные самостоятельные, контрольные и практические работы, тестирование.

<u>Устиная проверка</u> - это устный ответ обучающегося на один или систему вопросов в форме рассказа, беседы, в ходе которой выявить: уровень знаний содержания и последовательности программного материала; глубину усвоение материала; уровень самостоятельности суждений и выводов; степень развития логического мышления; культуру языка.

<u>Тематический контроль</u> осуществляется по завершении изучения крупного блока (темы) в форме самостоятельной или контрольной работы, тестирования.

<u>Итоговый контроль (итоговая аттестация)</u> осуществляется по завершении изучения учебного материала в форме, определяемой приказом директора школы и решением педагогического совета.

<u>Программой предусмотрено проведение в 9 классе</u> контрольных работ-1, практических работ- 22.

Тематическое планирование

No	Название разделов и	Всего		В том числе	Формы	
	тем	часов	уроки	Практические	Контрольные	самостоятельной
				работы	работы	работы
1	Кодирование и обработка графической информации	12	7	5		Проверочные самостоятельные работы - 2
2	Кодирование и обработка текстовой информации	14	8	6		Проверочные самостоятельные работы - 2
3	Кодирование числовой информации.	12	8	4		Тестирование.
4	Основы алгоритмизации и программирования	16	10	6		Проверочные самостоятельные работы - 3
5	Моделирование и формализация	8	6	1	1	Тестирование.
6	Информатизация общества	2	2			Тестирование
7	Итого	64	41	22	1	

Календарно-тематическое планирование9 класс

$N\!$	Тема урока	Кол-	Календар	Основные	Уровень	Уровень	Вид					
n/n	9 класс	60	ные	понятия	обязательный	возможный	контроля					
		часов	сроки									
	Кодирование и обработки графической информации 12											
1	Кодирование графической	1										
	информации			Векторные и	Виды		Самостоят.					
2	Кодирование графической	1		растровые	компьютерной		Практическ					
	информации			изображения.	графики.		Работы					
3	Практическая работа 1.1	1		Интерфейс.	Кодирование.							
	Кодирование графической			Редактирование.	Работа с							
	информации.			Анимация,	графическими							
4	Растровая и векторная графика	1		Кодирование.	редакторами							
5	Интерфейс и возможности	1										
	графических редакторов											
6	Интерфейс и возможности	1										
	графических редакторов											
7	Практическая работа 1.2	1										
	Редактирование изображений в											
	растровом графическом											
0	редакторе.											
8	Практическая работа 1.3	1										
	Создание рисунков в векторном	1										
9	графическом редакторе. Практическая работа 1.4	1										
9	Растровая и векторная	1										
	анимации.											
10	Кодирование звуковой	1										
10	информации.	1										
11	Цифровое фото и видео.	1										
11	цифровое фото и видео.	1										

12	Захват цифрового фото и создание слайд-шоу.	1								
	Практическая работа 1.6									
	Кодирование и обработки текстовой информации 14									
13	Кодирование текстовой	1								
	информации			Редактирование,	Создание,		Практическ			
14	Практическая работа 2.1	1		форматирование,	редактирование и		работа			
	Кодирование текстовой			символ, абзац,	форматирование					
	информации.			шаблоны,	документа.					
15	Создание документов в	1		гипертекст	Основные объекты					
	текстовом редакторе				в документе					
16	Ввод и редактирование	1			(символ, абзац) и					
	документа				операции над					
17	Практическая работа 2.2 Вставка	1			ними. Шаблоны					
	в документ формул.				документов.					
18	Сохранение и печать документа	1			Внедрение в					
19	Форматирование документа	1			документ					
20	Форматирование документа	1			различных объектов.					
21	Практическая работа 2.3	1			ооъектов.					
	Форматирование символов и									
22	абзацев.	4			Печать документа.					
22	Практическая работа 2.4	1			Сканирование					
	Создание и форматирование				документов.					
22	списков.	1			документов.					
23	Таблицы	1								
24	Практическая работа 2.5 Вставка	1								
25	в документ таблицы.	1								
25	Компьютерные словари.	1								
	Системы оптического									
26	распознания текстов.	1								
20	Практическая работа 2.6 Перевод текста с помощью	1								
	_									
	компьютерного словаря.									

	Кодирование числ	овой ин	рормации 12			
27	Представление числовой информации с помощью систем счисления Арифметические операции в позиционных системах счисления	1	Электронные таблицы. Встроенные функции. Диаграммы.	Вычисление с использованием компьютерных калькуляторов и электронных	Домашняя бухгалтерия. Исследование информационных моделей с	Практическ работы
29	Основные параметры электронных таблиц	1	Ссылки.	таблиц. Исследование	помощью электронных	
30 31	Ссылки Практическая работа 3.2 Относительные, абсолютные и смешанные ссылки.	1		функций и построение их графиков в электронных	таблиц	
32	Встроенные функции Практическая работа 3.3 Создание таблиц значений функций.	1		таблицах. Наглядное представление числовой		
34	Построение диаграмм и графиков в электронных таблицах	1		информации с помощью диаграмм.		
35	Практическая работа 3.4 Построение диаграмм различных типов.	1				
36	Базы данных в электронных таблицах	1				
37	Базы данных в электронных таблицах	1				
38	Практическая работа 3.5 Сортировка и поиск данных в электронных таблицах.	1				
	Основы алгоритмизаци	и и про	раммирования 16			
39	Алгоритм и его формальное	1				

	исполнение			Понятие	Создание
40	Блок-схемы алгоритмов	1	Алгоритм .	алгоритма.	проектов.
41	Линейный алгоритм. Алгоритм «ветвления»	1	Свойства алгоритмов.	Свойства алгоритмов.	
42	Линейный алгоритм. Алгоритм «ветвления»	1	Исполнители алгоритмов.	Исполнители алгоритмов.	
43	Алгоритм «выбор», «цикл»	1	Структура	Способы записи	
44	Алгоритм «выбор», «цикл»	1	программы.	алгоритмов.	
45	Переменные: тип, имя, значение. Выражения.	1		Основные алгоритмические	
46	Функции в языках объектно- ориентированного процедурного программирования	1		структуры. Основы языка программирования.	
47	Функции в языках объектно- ориентированного процедурного программирования	1			
48	Основы программирования	1			
49	Создание проектов. Практическая работа 4.2 Проект «Переменные»				
50	Практическая работа 4.3 Проект «Калькулятор»	1		Научится создавать проекты	
51	Практическая работа 4.4 Проект «Строковый калькулятор»	1		в системах объектно-	
52	Практическая работа 4.5 Проект «Дата и время»	1		ориентированного и алгоритмического	
53	Практическая работа 4.6 Проект «Сравнение кодов символов»	1		программирования	
54	Практическая работа 4.7 Проект «Отметка»	1			
	Моделирование и	формализаци	ия 8		

55	Окружающий мир как	1		Morore	Понятие	Пиотитуту
5.0	иерархическая система	1		Модель.	моделирования.	Практическая
56	Моделирование, формализация,	1		Моделирование.	Виды моделей.	работа.
	визуализация			Типы моделей.	Этапы разработки	
57	Моделирование, формализация,	1			и исследования	
	визуализация				моделей.	
58	Основные этапы разработки и	1				
	исследования моделей на					
	компьютере					
59	Приближенное решение	1				
	уравнений					
60	Информационные модели	1				
	управления объектами					
61	Практическая работа 5.2	1				
	Графическое решение					
	уравнений.					
62	Контрольная работа по теме:	1				
	«Моделирование и					
	формализация»					
	Информатизация об	щества 3	3			
63	Информационное общество	1		Информационная	Информационная	Самостоят.
64	Информационная культура.	1		культура. Защита	культура.	Работа
	Перспективы развития			информации.	Информационное	
	информационных и				общество.	
	коммуникационных технологий				Правовая охрана	
					программ, данных.	
					Лицензионные и	
					бесплатные	
					программы.	

Учебно-методическое и материально-техническое обеспечение образовательного процесса.

Учебно-методическое обеспечение для учителя:

- 1. Учебник «Информатика и ИКТ 9» Н. Угринович;
- 2 Методическое пособие информатика и ИКТ. Н. Угринович.
- 3. Информатика 10,11 класс. И. Семакин;
- 4. Основы информатики и вычислительной техники А.Г, Гейн;
- 5. Общая информатика. С. Симонович, Г. Евсеев;
- 6. Практическая информатика С. Симонович, Г. Евсеев;
- 7. Самоучитель работы на компьютере. А. Левин.
- 8. Персональный компьютер в школе. В. Перепелкин.
- 9. Основы информатики и вычислительной техники. А. Г. Кушниренко.

Учебно-методическое обеспечение для учащихся:

- 1. Учебник «Информатика и ИКТ 9» Н. Угринович;
- 2. Основы информатики и вычислительной техники А.Г., Гейн;
- 3. Общая информатика. С. Симонович, Г. Евсеев;
- 4. Практическая информатика С. Симонович, Г. Евсеев;
- 5. Самоучитель работы на компьютере. А. Левин.

Информационное обеспечение:

- 1. Электронное приложение. Методическое пособие информатика и ИКТ. Н. Угринович.
- 2 CD Информатика 9-11 класс.
- 3. <u>Infourok.ru</u>
- 4. Narod.ru
- 5. <u>Uchportal.ru</u>
- 6. <u>Interneturok.ru</u>

Средства обучения:

1.Таблицы:

- 1. Как мы воспринимаем информацию.
- 2. Хранение информации.
- 3. Передача информации.
- 4. Подготовка текстовых документов.
- 5. Как хранят информацию в компьютере.
- 6. Алгоритмы и исполнители
- 7. Цифровые данные.
- 8. Обработка информации.
- 2. Компьютеры.
- 3.Проектор.
- 4.Интерактивная доска.

СОГЛАСОВАНО
Протокол заседания
Методического совета
МБОУ Титовской СОШ
от 27 августа 2015 года №1
_____ Артамонова В.А.

Контрольная работа по теме «Моделирование и формализация» 9 класс

Вариант 1.

- 1. Какие пары объектов не находятся в отношении "объект модель"?
- А) компьютер его фотография;
- Б) компьютер его функциональная схема;
- В) компьютер его процессор;
- Г) компьютер его техническое описание.
- 2. Информационной моделью, которая имеет иерархическую структуру является
- А) файловая система компьютера;
 - Б) расписание уроков;
- В) таблица Менделеева;
 - Г) программа телепередач.
 - 3. Какая модель является статической (описывающей состояние объекта)?
 - А) формула химического соединения;
 - Б) формулы равноускоренного движения;
 - В) формула химической реакции;
 - Г) второй закон Ньютона.
 - 4. Информационной моделью, которая имеет сетевую структуру является ...
- А) файловая система компьютера; Б)

таблица Менделеева;

- В) генеалогическое дерево семьи;
 - Г) модель компьютерной сети Интернет.
 - 5. Информационной (знаковой) моделью является ...
- А) анатомический муляж; Б)

макет здания;

- В) модель корабля;
 - Г) химическая формула.
 - 6. В информационных моделях разомкнутых систем управления отсутствует ...
- А) управляющий объект;
 - Б) управляемый объект;
- В) канал управления;
 - Г) канал обратной связи.
 - 7. Какие из приведенных ниже определений понятия «модель» верные? Отметить все правильные на ваш взгляд ответы.
 - А) модель это некое вспомогательное средство, объект, который в определенной ситуации заменяет другой объект;
 - Б) модель это новый объект, который отражает некоторые стороны изучаемого объекта или явления, существенные с точки зрения цели моделирования;
 - В) модель это физический или информационный аналог объекта, функционирование которого по определенным параметрам подобно функционированию реального объекта;
 - Г) модель некоторого объекта это другой объект (реальный, знаковый или воображаемый), отличный от исходного, он обладает существенными для целей моделирования свойствами и в рамках этих целей полностью заменяет исходный объект.

8. Вставьте в предложение наиболее точный термин из предложенного ниже списка.

Если материальная модель объекта - это его физическое подобие, то информационная модель объекта - это его ...

- А) описание;
- Б) точное воспроизведение;
- В) схематичное представление;
- Г) преобразование.
- 9. Какое из утверждений верно?
- А) информационные модели одного и того же объекта, пусть даже предназначенные для разных целей, должны быть во многом сходны;
- Б) информационные модели одного и того же объекта, предназначенные для разных целей, могут быть совершенно разными.
- 10. Может ли передаваться информация от человека к человеку и от поколения к поколению без использования моделей?
- А) нет, без моделей никогда не обойтись;
- Б) да, иногда, например, генетическая информация;
- В) да, чаще всего знания передаются без использования каких-либо моделей.
- 11. Верно ли, что моделирование представляет собой один из основных методов познания, способ существования знаний?
- А) нет; Б) да.
- 12. Какие из приведенных ниже моделей являются вероятностными? Выбрать три правильных ответа.
- А) прогноз погоды;
- Б) отчет о деятельности предприятия;
- В) схема функционирования устройства;
- Г) научная гипотеза;
- Д) оглавление книги;
- Е) план мероприятий, посвященных Дню Победы.
- 13. Правильно ли определен вид следующей модели: «Компьютерная модель полета мяча, брошенного вертикально вверх, - динамическая формализованная модель, имитирующая поведение данного объекта»?
- А) нет; Б) да.

Вариант 2.

- 1. Какие пары объектов находятся в отношении "объект модель"?
- А) компьютер данные;
- Б) компьютер его функциональная схема;
- В) компьютер -программа;
- Г) компьютер алгоритм.
- 2. Какая модель компьютера является формальной (полученной в результате формализации)?
- А) техническое описание компьютера;
- Б) фотография компьютера;
- В) логическая схема компьютера;
- Г) рисунок компьютера.
- 3. Информационной моделью, которая имеет табличную структуру является ...
- А) файловая система компьютера;
- Б) таблица Менделеева;
- В) генеалогическое дерево семьи;
- Г) функциональная схема компьютера.
- 4. Какая модель является динамической (описывающей изменение состояния объекта)
- А) формула химического соединения;
- Б) формула закона Ома;
- В) формула химической реакции;
- Г) закон Всемирного тяготения.
- 5. Формальной информационной моделью является ...
- А) анатомический муляж;
- Б) техническое описание компьютера;
- В) рисунок функциональной схемы компьютера;
- Г) программа на языке программирования.
- 6. Компьютерный эксперимент может быть проведен, если информационная модель представлена в форме ...
- А) программы на языке программирования;
- Б) изображения в растровом графическом редакторе;
- В) изображения в векторном графическом редакторе;
- Г) текста в текстовом редакторе.
- 7. Вставьте пропущенное слово, выбрав его из предложенного ниже списка. Информационная модель это целенаправленно отобранная информация об объекте, которая отражает наиболее существенные для исследователя ... этого объекта.
- А) информация;
- Б) законы функционирования;
- В) отличительные особенности;
- Γ) свойства.
- 8. Вставьте пропущенное слово, выбрав его из предложенного ниже списка. Компьютерная модель это ... модель, выполненная с помощью компьютерных технологий.
- А) информационная; Б) схематичная; В) электронная.

- 9. Могут ли у разных объектов быть одинаковыми модели?
- A) нет;
- Б) да, но только для конструктивных (искусственных, созданных людьми) объектов;
- В) да.
- 10. Построение любой модели начинается ...
- А) с выделения свойств и признаков объекта-оригинала;
- Б) с определения цели моделирования;
- В) с выбора вида будущей модели?
- 11. Вставьте в предложение наиболее точный термин из предложенного ниже списка.

Если материальная модель объекта - это его, то информационная модель объекта - это его описание.

- А) физическое подобие;
- Б) точное воспроизведение;
- В) схематичное представление;
- Г) преобразование.
- 12. Какие из приведенных ниже моделей являются статическими?

Выбрать три правильных ответа.

- А) карта местности;
- Б) дружеский шарж;
- В) программа, имитирующая движение стрелок циферблата на экране дисплея;
- Г) план сочинения;
- Д) график изменения температуры воздуха в течение дня.
- 13. Какие из утверждений являются верными? Выбрать два правильных ответа.
- А) математическая формула является информационной моделью;
- Б) график движения поезда табличная статическая модель;
- В) план дома графическая детерминированная модель, описывающая структуру объекта;
- Γ) турнирная таблица чемпионата по футболу эталонная динамическая модель.

Практическая работа 4.5 Проект «Даты и время»

Аппаратное и программное обеспечение. Компьютер с установленной операционной системой Windows или Linux.

Цель работы. Научиться применять оператор цикла с предусловием в системах объектно-ориентированного и алгоритмического программирования. **Задание.** Разработать проект, в котором:

на метку выводится текущее время;

на метку выводится прошедшее (или оставшееся) количество дней с (до) какого-либо события.

Проект «Даты и время» на языках объектно- ориентированного программирования Visual Basic 2005 или Gambas

1.В операционной системе Windows запустить систему объектно ориентированного программирования Visual Basic 2005 командой [Программы-Visual Basic 2005 Express Edition]. Или:

В оперативной системе Linux запустить систему объектно-ориентированного программирования Gambas командой [Программы-Средства разработки-Gambas].

Создадим графический интерфейс проекта.

2.Разместить на форме (рис. 4.5.1 и 4.5.2):

метку Labe 11 для вывода значений текущего времени;

метку Labe 12 для вывода прошедшего (или оставшегося) количества дней с (до) какого-либо события;

объект Timerl для периодического обновления значения времени, который вызывает событие Tick через определенные пользователем интервалы времени.

Периодичность события Tick может быть задана в свойстве Interval, измеряемом в миллисекундах (может изменяться от 0 до 65535). Для того чтобы событие Tick происходило каждую секунду, необходимо свойству Interval присвоить значение 1000.

3. Выделить объект Timer 1 и с помощью диалогового окна *Свойства* присвоить свойству Interval значение 1000, а свойству Enabled значение True.

Создадим обработчик события на языке Visual Basic. Дату необходимо задать в формате День/Месяц/Год.

4. Dim Datl, Dat2 As Date
Sub Timerl_Tick (...)
Labell.Text = TimeOfDay
Datl = #3/1/1950*
Dat2 = Today
Label2.Text=DateDiff(DateInterval.Day,Datl,Dat2)
End Sub

Создадим обработчик события на языке Gambas. Дату необходимо задать в формате Месяц/День/Год.

5. Public Sub TimerlJTimer()

Dim Datl, Dat2 As Date

Labell.Text = Time

Dat1 = "1/3/1950" Dat2 = Now

Label2.Text = DateDiff(Datl, Dat2, gb.Day) End

6. Запустить проект. На одну метку с интервалом в одну секунду будет выводиться системное время компьютера, а на другую метку — количество дней, прошедших со дня рождения до текущей даты.

Практическая работа 5.2

Проект «Графическое решение уравнения»

Аппаратное и программное обеспечение. Компьютер с установленной операционной системой Windows или Linux.

Цель работы. Научиться создавать компьютерные модели решения уравнений на языке объектно-ориентированного программирования Visual Basic.

Задание. Разработать проект, в котором приближенно графически решается уравнение x^3 - $\sin x = 0$.

Проект «Графическое решение уравнения» на языке объектно-ориентированного программирования Visual Basic 2005

- 1. В операционной системе Windows запустить систему объектноориентированного программирования Visual Basic 2005 командой [Программы-Visual Basic 2005 Express Edition].
- 2. Разместить на форме (рис. 5.2.1):
- графическое поле PictureBoxl, в котором будет осуществляться построение графика функции $y = x^3$ sinx;
- кнопку Button 1 для запуска обработчика события, реализующего построение графика.

В обработчике события осуществим преобразование компьютерной системы координат графического поля в математическую систему координат, удобную для построения графика функции. Нарисуем оси координат и нанесем на них шкалу.

В полученной математической системе координаты находятся в диапазонах -150 < X < 150 и -100 < Y < 100. Однако для поиска корней уравнения необходимо построить график функции в диапазоне аргумента 1,5 < X < 1,5, на котором функция принимает значения примерно в диапазоне -1 < Y < 1. Следовательно, необходимо увеличить масштаб графика в 100 раз:

- координаты точек графика необходимо умножить на 100;
- значения шкал осей разделить на 100.

Построение графика функции осуществим в цикле со счетчиком (аргумент X) с использованием метода рисования точки DrawEllipse (Peril, X*100, Y*100, Y

3. Dim Graphl As Graphics

Dim Penl As New Pen (Color .Black, 2) Dim drawBrush As New SolidBrush(Color.Black) Dim drawFont As New Font(«Arial», 10) Dim X, Y As Single Private Sub Buttonl_Click (...) Graphl = Me.PictureBoxl.CreateGraphics() Graphl.Clear(Color.White) 'Печать шкал математической системы координат в компьютерной системе координат For X = -150 To 150 Step 50 Graphl.DrawString(X / 100, drawFont, drawBrush, X + 150, 80) Next X For Y = 0 To 200 Step 50

Graphl.DrawString((Y - 100) / 100, drawFont, drawBrush, 150, 180 - Y) **Next** Y 'Преобразование компьютерной системы координат 'в математическую систему координат Graphl.ScaleTransform(1, -1) 'Поворот оси Y Graphl.TranslateTransform(150, -100) 'Сдвиг по осям X и Y

'Рисование осей математической системы 'координат Graphl.DrawLine(Penl, -150, 0, 300, 0) 'Ось X Graphl.DrawLine(Penl, 0, -100, 0, 100) 'Ось Y **For** X = -150 **To** 150 **Step** 50 'Засечки на оси X Graphl.DrawLine(Penl, X, -5, X, 5) **Next X**

For Y = -100 To 100 Step 50 'Засечки на ocu Y Graphl.DrawLine(Penl, -5, Y, 5, Y) Next Y

Трафик функции

For X = -1.5 To 1.5 Step 0.01 Y = X^{Π} 3 - Math.Sin(X) Graphl.DrawEllipse(Penl, X * 100, Y * 100, 1, 1) Next X End Sub

4. Запустить проект на выполнение и щелкнуть по кнопке *График*.

График функции пересекает ось X три раза и, следовательно, уравнение имеет три корня. По графику грубо приближенно можно определить, что $X_1 = 0.9, X_2 = 0$ и $X_3 = 0.9$.

Практическая работа 1.1

Кодирование графической информации

Аппаратное и программное обеспечение. Компьютер с установленной операционной системой Windows или Linux.

Цель работы. Научиться:

- устанавливать различные графические режимы экрана монитора;
- устанавливать цвет путем задания числовых кодов интенсивностей базовых цветов палитры RGB (красного, зеленого и синего).

Задание 1. Установить графический режим экрана монитора:

- с наиболее возможным высоким разрешением экрана;
- с наиболее возможной глубиной цвета.

Задание 2. В графическом редакторе последовательно установить цвета (см. табл. 1.3. Кодировка цветов при глубине цвета 24 бита) с использованием палитр цветов RGB, СМҮК и HSB. Цвета устанавливать путем введения числовых кодов базовых цветов в соответствующие текстовые поля.

1.1.3. Палитры цветов в системах цветопередачи RGB, CMYK и HSB

Задание 1. Установка графического режима экрана монитора в операционной системе Windows

B операционной системе Windows щелкнуть правой

кнопкой мыши по *Рабочему столу*, появится диалоговое окно *Свойства*: Экран. Выбрать вкладку *Параметры*, которая предоставляет возможность установить графический режим экрана.

Разрешающую способность

экрана установить с помощью ползунка *Разрешение экрана*. Глубину цвета установить с помощью раскрывающегося списка *Качество цветопередачи*

Задание 2. Установка цвета в графическом редакторе с использованием системы цветопередачи RGB в векторном редакторе OpenOffice.org Draw

- 1.В операционной системе Windows или Linux запустить интегрированное офисное приложение OpenOffice и ввести команду [Файл-Создатъ-Рисунок]. 2.Нарисовать восемь одинаковых фигур (например, прямоугольников). Для каждой фигуры зададим цвет из таблицы.
- 3. Выделить фигуру и ввести команду [Формат-Область...]. На появившемся диалоговом окне Область выбрать вкладку Цвета. С помощью раскрывающегося списка выбрать систему цветопередачи RGB. Задать цвет путем установки в полях со счетчиком интенсивностей базовых цветов.
- 4. Выполнить пункт 3 для остальных фигур. Будут получены восемь фигур, закрашенные цветами, указанными в таблице.

Практическая работа 1.2

Редактирование изображений в растровом графическом редакторе

Аппаратное и программное обеспечение. Компьютер с установленной операционной системой Windows или Linux, сканер или цифровая камера.

Цель работы. Научиться получать цифровые растровые изображения и применять к ним различные графические эффекты.

Задание. Получить с помощью сканера или цифровой камеры растровое изображение (например, обложку учебника) и преобразовать его с помощью эффектов просмотра через линзу и загнутой страницы.

Редактирование растрового изображения помощью растрового графического редактора GIMP

1. Получить с помощью сканера или цифровой камеры растровое изображение обложки учебника и сохранить его в файле обложка.**bmp.**

В случае отсутствия сканера и цифровой камеры воспользоваться готовым изображением обложка.bmp, хранящимся на Windows-CD в папке ..\IIKT9\Graph.

2. Запустить редактор GIMP командой [Пуск-Программы- GIMP-GIPM2].

Появится *Панель инструментов* графического редактора, содержащая меню редактора

- 3. С помощью меню редактора ввести команду [Файл-Открытъ...].
- С помощью диалогового окна *Загрузить изображение* открыть графический файл обложка.bmp.
- 4. В окне изображения графического редактора откроется растровое изображение обложки учебника.
- 5. Для преобразования изображения обложки в вид его просмотра через линзу с помощью меню окна изображения ввести команду [Фильтры-Эффекты стекол-Линза...]. В появившемся диалоговом окне Эффект линзы выбрать параметры коэффициента преломления и щелкнуть по кнопке Да.
- 6. Для преобразования изображения обложки в загнутую страницу с помощью меню окна изображения ввести команду [Фильтры-Искажения-Загибание страницы...]. В появившемся диалоговом окне Эффект загнутой страницы выбрать положение и ориентацию загиба и щелкнуть по кнопке Да.
- 7. Получим исходное изображение и полученные с использованием эффектов примерно такие растровые изображения в формате TIFF:

Практическая работа 1.3

Создание рисунков в векторном графическом редакторе

Аппаратное и программное обеспечение. Компьютер с установленной операционной системой Windows или Linux.

Цель работы. Научиться использовать различные возможности векторных редакторов: рисовать графические примитивы, линии и стрелки, вставлять растровые изображения и текст, использовать градиентную заливку, осуществлять группировку объектов, сохранять файлы в различных графических форматах.

Задание 1. Нарисовать функциональную схему компьютера, используя широкие возможности векторного графического редактора.

Задание 2. Сохранить полученный рисунок в векторном и растровом графических форматах.

Задание 1. Рисование функциональной схемы компьютера

- **1.**В операционной системе Windows или Linux запустить интегрированный пакет <u>OpenOffice.org</u> и ввести команду [Файл-Создать-Рисунок]. Установим размеры, поля и ориентацию области рисования.
- 2.Щелкнуть в области рисования правой кнопкой мыши и выбрать в контекстном меню команду [Слайд-Параметры страницы...]. В появившемся окне на вкладке Страница выбрать формат области рисования, ее поля и ориентацию.

Для большей точности рисования привяжем рисуемые фигуры к сетке и сделаем сетку видимой.

3. Вызвать правым щелчком в области рисования ее контекстное меню и активизировать его пункты, задающие параметры сетки. Нарисуем функциональную схему компьютера, состоящую из шести прямоугольников: Процессор, Оперативная память, Магистраль, Устройства ввода,

Долговременная память и Устройства вывода.

- 4. На панели *Рисование*, которая находится в нижней части окна приложения, нажать кнопку *Прямоугольник* и нарисовать шесть прямоугольников в области рисования.
- 5. Выделить последовательно каждый прямоугольник и с помощью контекстного меню установить цвет и вид контура и заливки. Введем в прямоугольники названия устройств компьютера.
- 6. На панели инструментов нажать кнопку *Текст* и ввести названия устройств компьютера. Вставим в некоторые прямоугольники изображения соответствующих устройств компьютера.
- 7.Выделить прямоугольник и ввести команду [Вставка-Изображение-Из файла...]. В появившемся диалоговом окне Вставить графический объект найти в иерархи

ческой системе папок изображение процессора и щелкнуть по кнопке ОК. Аналогично вставить изображение модуля оперативной памяти.

Вставим в функциональную схему соединительные стрелки.

- 8. На панели инструментов нажать на стрелку рядом с кнопкой Соединительные линии. На появившейся панели выбрать объект Прямая соединительная линия со стрелками и нарисовать стрелку, соединяющую магистраль с процессором.
- 9. Выделить стрелку и ввести команду [Правка-Копировать], а затем четыре раза [Правка-Вставить]. Появившимися четырьмя стрелками соединить магистраль с устройствами компьютера.

Подберем дизайн функциональной схемы компьютера, установим для каждого прямоугольника подходящий тип градиентной заливки.

10. Последовательно выделить прямоугольники и в контекстном меню выбрать пункт *Площадь*... В появившемся диалоговом окне *Область* выбрать вкладку *Градиент* и на ней тип градиентной заливки *Осевой*, угол *90 градусов* и цвета *Белый* и *Серый*. Получим примерно такую функциональную схему компьютера:

Для удобства изменения размера или перемещения функциональной схемы компьютера, состоящей из отдельных объектов, эти объекты целесообразно сгруппировать.

11. Последовательно выделить мышью все объекты при нажатой клавише $\{Shift\}$ и ввести команду $\{\Gamma pynnupoвкa\}$.

Задание 2. Сохранение рисунка в векторном и растровом графических форматах

Сохраним созданный векторный рисунок в собственном формате редактора OpenOffice.org Draw, а затем экспортируем его в растровый формат JPEG.

- 1. Ввести команду [Файл-Сохранить как...], и в окне Сохранить как выбрать формат Рисунок OpenDocument (odg) и имя файла, например компьютер. Будет сохранен векторный графический файл компьютер.odg.
- 2. Ввести команду [Файл-Экспорт...], и в окне Экспорт выбрать любой растровый формат (например, JPEG). Файл будет сохранен в этом формате: компьютер-jpg.

Практическая работа 1.4 растровая и векторная анимации

Аппаратное и **программное обеспечение.** Компьютер с установленной операционной системой Windows или **Linux.**

Цель работы. Научиться создавать анимацию в презентациях, GIF- и flash-анимацию.

Задание 1. Создать в презентации анимационное движение Земли вокруг Солнца.

Задание 2. Создать GIF-анимацию «Вращении Земли» из набора растровых GIF-изображений, показывающих последовательные положения Земли.

Задание 1. Анимация в презентации

- 1.В операционной системе Windows запустить программу разработки презентаций Microsoft PowerPoint и ввести команду [Файл-Создать]. Или:в операционной системе Windows или Linux запустить программу разработки презентаций OpenOffice.org Impress и ввести команду [Файл-Создать-Презентацию...].
- 2. На слайде нарисовать желтый круг (Солнце) и ввести команду [Вставка-Рису нок-Из файла...].
- В диалоговом окне Добавление рисунка в иерархической файловой системе на диске Windows-CD в папке ...\IIRT9\Graph\ выбрать файл Земля-јрд. Создадим анимационное движение Земли вокруг Солнца и вращение Земли путем задания анимационных эффектов.
- 3. Ввести команду [Показ слайдов-Эффекты анимации]. Появится диалоговое окно Настройка анимации.
- 4. Выделить объект Земля, щелкнуть по кнопке Добавить эффект и ввести команду[Пути перемещения-Круг]. Переместить объект Солнце так, чтобы оно оказалось в центре круга (траектории перемещения объекта Земля).
- 5.Выделить объект Земля, щелкнуть по кнопке Добавить эффект и ввести команду [Выделение-Вращение]. Настроим анимационные эффекты так, чтобы они начинались одновременно и заканчивались с переходом на следующий слайд.
- 6.В диалоговом окне *Настройка анимации* выделить по очереди анимационные эффекты и в контекстном меню ввести команду [Параметры эффектов...].
- В появившемся диалоговом окне на вкладке Время установить параметры анимационного эффекта.
- 7. Запустить презентацию на выполнение командой [Показ слайдов-Начать показ] и наблюдать вращение Земли вокруг Солнца и собственной оси.

Задание 2. Создание GIF-анимации с помощью растрового графического редактора GIMP

Загрузим в растровый редактор набор растровых изображений, показывающих последовательные положения Земли.

1.В операционной системе Windows или Linux запустить редактор

GIMP командой [Пуск-Программы-GIMP-GIPM2].

С помощью команды [Φ айл-Oткрыть...] последовательно за грузить в окна изображений файлы 1.gif - 14.gif из папки ИКТ9\С1Р-анимация\.

Последовательно скопируем изображения 2.gif— 14.gif в окно с изображением 1.gif.

- 2.В окне изображений 2.gif- 14.gif вводить команду [Правка-Копировать].
- В окне изображения 1.gif вводить команду [Правка-Вставить в].

Сохраним полученное изображение как GIF-анимацию.

- 3.В окне изображения 1.gif выбрать команду [Файл-Сохранить как...]. В появившемся диалоговом окне Экспортировать файл установить переключатель в положение Сохранить как анимацию и щелкнуть по кнопке Экспорт.
- 4. В появившемся диалоговом окне *Сохранить как GIF* установить флажок *Бесконечный цикл* и с помощью счетчика установить задержку между кадрами в миллисекундах.

Практическая работа 1.6

Захват цифрового фото и создание слайд-шоу

Аппаратное и программное обеспечение. Компьютер с установленной операционной системой Linux и цифровой фотокамерой, подключенной к USB-порту (в операционной системе Windows надо установить программу захвата и редактирования цифровых фотографий, полученную с камерой).

Цель работы. Научиться захватывать снимки с цифровых фотокамер и создавать слайд-шоу.

Задание. Захватить фото с цифровой фотокамеры и создать слайд-шоу.

Захват цифровых фото и создание слайд-шоу с использованием системы digiKam

- 1. Запустить систему захвата цифровых фотографий командой [Графика-Работа с фотографиями digiKam]. В появившемся окне приложения выбрать пункт Камера, чтобы выбрать модель подключенной цифровой камеры.
- 2. В появившемся окне *Параметры камеры* из списка выбрать модель подключенной цифровой камеры.
- 3. Если в списке такой камеры нет, щелкнуть по кнопке *Автоопределение*. В верхней строке появится модель *Mass Storage Camera* и путь к ее флэшкарте disk:/media/EXTERNAL

Выполним захват цифровых фотографий, т. е. их копирование с карты памяти цифровой камеры на жесткий диск компьютера.

- 4. В окне программы ввести команду [Камера-Media Brouse-EXTERNAL]. Появится окно, содержащее изображения, найденные на флэш-карте камеры.
- 5. Щелкнуть по кнопке Загрузить и выбрать пункт Загрузить все.

Появится окно *Выберите альбом*. Щелкнуть по кнопке *Создать альбом* и ввести его имя (например, *Новый альбом*).

Создадим слайд-шоу из загруженных с камеры фотографий.

6. В окне приложения digiKam ввести команду [Вид-Слайд-шоу-Все]. На экране монитора компьютера будут последовательно появляться фотографии в полноэкранном режиме.

Практическая работа 2.1 Кодирование текстовой информации

Аппаратное и программное обеспечение. Компьютер с установленной операционной системой Windows или Linux.

Цель работы. Научиться определять числовые коды символов и осуществлять перекодировку русскоязычного текста в текстовом редакторе.

Задание1. В текстовом редакторе определить числовые (шестнадцатеричные) коды нескольких символов в кодировке *Unicode* (Юникод).

Задание2. В текстовом редакторе Hieroglyph представить слово «Кодировка» в пяти различных кодировках: *Windows, MS-DOS, KOU-8, Mac, ISO.*

Определение числового кода символа

- **1.**В операционной системе Windows запустить текстовый редактор Microsoft Word командой [Программы-Microsoft Word] или текстовый редактор OpenOffice.org Writer командой [Программы-OpenOffice-OpenOffice Writer]. Или: в операционной системе Linux запустить текстовый редактор OpenOffice.org Writer командой [Oфис-OpenOffice Writer].
- Определим числовой код символа в текстовом редакторе Microsoft Word.
- 2.В текстовом редакторе Microsoft Word ввести команду [Вставка-Символ...]. На экране появится диалоговое окно Символ. Центральную часть диалогового окна занимает фрагмент таблицы символов.
- 3. Для определения числового кода знака кириллицы с помощью раскрывающегося списка *Набор*: выбрать пункт *кириллица*.
- 4. Для определения шестнадцатеричного числового кода символа в кодировке *Unicode* с помощью раскрывающегося списка *uз:* выбрать тип кодировки *Юникод (шестн.)*.
- 5. В таблице символов выбрать символ (например, заглавную букву Ё). В текстовом поле *Код знака:* появится его шестнадцатеричный числовой код (в данном случае 0401).

Перевод числового кода символа из шестнадцатеричной системы счисления в десятичную систему счисления можно осуществить с помощью программного калькулятора NumLock Calculator.

Определим числовой код символа в текстовом редакторе <u>OpenOffice.org</u> Writer. 6. В текстовом редакторе <u>OpenOffice.org</u> Writer ввести команду [Вставка-Специальные символы...]. На экране появится диалоговое окно Выбор символа. Центральную часть диалогового окна занимает фрагмент таблицы символов.

- 7. Для определения числового кода знака кириллицы с помощью раскрывающегося списка Набор символов: выбрать пункт кириллица.
- 8. В таблице символов выбрать символ (например, заглавную букву Ё). В правом нижнем углу диалогового окна появится его шестнадцатеричный числовой код (в данном случае 0401).

Перевод числового кода символа из шестнадцатеричной системы счисления в десятичную систему счисления можно осуществить с помощью программного калькулятора KCalc.

Практическая работа 2.2

Вставка в документ формул

Аппаратное и программное обеспечение. Компьютер с установленной операционной системой Windows или Linux.

Цель работы. Научиться вставлять в документ физические и математические формулы.

Задание 1. Вставить в документ формулу закона Ома с использованием *Редактора формул {Microsoft Equation)*, встроенного в текстовый редактор Microsoft Word.

Задание 2. Вставить в документ формулу закона Ома с использованием редактора формул <u>OpenOffice.org</u> Math, встроенного в интегрированное офисное приложение <u>OpenOffice.org</u>.

Задание 1. Вставка в документ формул с использованием *Редактора формул*, встроенного в текстовый редактор Microsoft Word

1.В операционной системе Windows запустить текстовый редактор Microsoft Word командой [Программы-Microsoft Word]. Создать новый документ с помощьюкоманды [Файл-Создать...].

Вызовем Редактор формул (Microsoft Equation).

2.Для вставки в документ формулы необходимо ввести команду [Вставка-Объект...], появится диалоговое окно Вставка объекта.

На вкладке $Cosdanue\ в$ списке $Tun\ oбъекта:$ выбрать пункт $Microsoft\ Equation\ 3.0$ и щелкнуть по кнопке OK.

3. В тексте документа появится рамка для ввода формулы, а в окне документа появится панель инструментов *Редактора формул*.

Вставим в документ формулу закона Ома.

4. Внутри рамки для ввода формул ввести на латинской клавиатуре левую часть формулы и знак равенства.

На панели инструментов *Редактора формул* щелкнуть по кнопке *Шаблоны дробей и радикалов*.

На открывшейся панели выбрать кнопку с изображением дроби и щелкнуть по ней мышью, В рамке для ввода формулы появится заготовка дроби, в которую ввести знаки U и R.

- 5. В результате в рамке для ввода формул появится формула закона Ома. Задание 2. Вставка в документ формул с использованием редактора формул **OpenOffice.org** Math, встроенного в интегрированное офисное приложение **OpenOffice.org**
- 1.В операционной системе Windows или Linux запустить текстовый редактор OpenOffice.org Writer соответственно командой [Программы-OpenOffice-OpenOffice Writer] или [Офис-OpenOffice Writer]. Вызовем редактор формул

OpenOffice.org Math.

2.Для вставки в документ формулы ввести команду [Вставка-Объект-Формула...], появится панель Выбор. На панели Выбор выбрать шаблон формулы В документе появится заготовка формулы

Ввести в код формулы конкретные переменные закона Ома:

В документе появится формула закона Ома.

Практическая работа 2.3

Форматирование символов и абзацев

Аппаратное и программное обеспечение. Компьютер с установленной операционной системой Windows или Linux.

Цель работы. Научиться устанавливать в документе различные параметры форматирования символов и абзацев.

Задание 1. В текстовом редакторе Microsoft Word ввести в документ строки и отформатировать их по указанному в са-мих строках образцу (шрифт, размер, начертание и цвет):

Times New Roman, 14, курсив, красный, 102;

Arial. 8. полужирный подчеркнутый, зеленый, 10?;

Courier New, 10, полужирный курсив, синий.

Задание 2. В текстовом редакторе OpenOffice.org Writer ввести в документ абзацы и отформатировать их по указан-ному в самих абзацах образцу (шрифт, выравнивание, отступы первой строки, отступы абзаца целиком, междустрочные интервалы и интервалы между абзацами):

Абзац с выравниванием по ширине, отступ слева 6 см, шрифт Times New Roman, размер 12 пт, обычный.

Абзац с выравниванием по центру, шрифт Arial, размер 14 пт, полужирный.

Абзац с выравниванием по левому краю, отступ первой строки 1,25 см, шрифт Courier New, размер 10 пт, курсив, подчеркнутый.

Задание 1. Форматирование символов в текстовом редакторе Microsoft Word

- 1.В операционной системе Windows запустить текстовый редактор Microsoft Word командой [Программы-Microsoft Word]. Создать новый документ с помощью команды [Файл-Создать...].
- 2.Ввести в документ строки, указанные в задании 1.
- 3.Для форматирования шрифта ввести команду [Формат- Шрифт...], откроется диалоговое окно Шрифт. На вкладке Шрифт с помощью раскрывающихся списков установить параметры форматирования: шрифт, размер, начертание, цвет символов и варианты подчеркивания.

4. Установить верхний 10 и нижний Юг индексы с помощью флажков надстрочный и подстрочный группы Видоизменение.

Задание 2. Форматирование абзацев в текстовом редакторе **OpenOffice.org** Writer

- 1. В операционной системе Windows или Linux запустить текстовый редактор OpenOffice.org Writer соответственно командой [Программы-OpenOffice-OpenOffice Writer] или [Oфис-OpenOffice Writer].
- 2. Внести в документ абзацы, указанные в задании 2. Отформатируем шрифт.
- 3.Для форматирования шрифта ввести команду [Формат-Символы...]. В появившемся диалоговом окне Символы на вкладке Шрифт установить с помощью списков гарнитуру шрифта, начертание и размер.

Отформатируем абзацы.

- 4.Для форматирования абзаца ввести команду [Формат-Абзац...]. В появившемся диалоговом окне Абзац на вкладке Отступы и интервалы установить с помощью счетчиков отступы абзаца, отступы и интервалы между абзацами и строками.
- 5. На вкладке Выравнивание установить параметры выравнивания абзацев.

Критерии и нормы оценки знаний, умений и навыков обучающихся по курсу «Информатика и ИКТ»

- 1. Содержание и объем материала, подлежащего проверке, определяется программой и учебником. При проверке усвоения материала необходимо выявлять полноту, прочность усвоения учащимися теории и умение применять ее на практике в знакомых и незнакомых ситуациях.
- 2. Основными формами проверки ЗУН учащихся по информатике являются устный опрос, письменная контрольная работа, самостоятельная работа, тестирование, практическая работа на ЭВМ и зачеты (в старших классах).
- 3. При оценке письменных и устных ответов учитель в первую очередь учитывает показанные учащимися знания и умения. Оценка зависит также от наличия и характера погрешностей, допущенных учащимися. Среди погрешностей выделяются ошибки и недочеты.
 - Ошибкой считается погрешность, если она свидетельствует о том, что ученик не овладел основными знаниями и (или) умениями, указанными в программе.
 - Недочетами считаются погрешности, которые не привели к искажению смысла полученного учеником задания или способа его выполнения, например, неаккуратная запись, небрежное выполнение блок-схемы и т. п.
- 4. Задания для устного и письменного опроса учащихся состоят из теоретических вопросов и задач.
 - Ответ за теоретический вопрос считается безупречным, если по своему содержанию полностью соответствует вопросу, содержит все необходимые теоретические факты и обоснованные выводы, а его изложение и письменная запись математически и логически грамотны и отличаются последовательностью и аккуратностью.
 - Решение задачи по программированию считается безупречным, если правильно выбран способ решения, само решение сопровождается необходимыми объяснениями, верно выполнен алгоритм решения, решение записано последовательно, аккуратно и синтаксически верно по правилам какого-либо языка или системы программирования.
 - Практическая работа на ЭВМ считается безупречной, если учащийся самостоятельно или с незначительной помощью учителя выполнил все этапы решения задачи на ЭВМ, и был получен верный ответ или иное требуемое представление задания.
- 5. Оценка ответа учащегося при устном и письменном опросах, а также при самостоятельной работе на ЭВМ, проводится по пятибалльной системе, т.е. за ответ выставляется одна из отметок: 1 (плохо), 2 (неудовлетворительно), 3 (удовлетворительно), 4 (хорошо), 5 (отлично).
- 6.Учитель может повысить отметку за оригинальный ответ на вопрос или оригинальное решение задачи, которые свидетельствуют о высоком уровне владения информационными технологиями учащимся, за решение более сложной задачи или ответ на более сложный вопрос, предложенные учащемуся дополнительно после выполнения им основных заданий.

ОЦЕНКА ОТВЕТОВ УЧАЩИХСЯ

Для устных ответов определяются следующие критерии оценок:

- оценка «5» выставляется, если ученик:
- полно раскрыл содержание материала в объеме, предусмотренном программой и учебником;
- изложил материал грамотным языком в определенной логической последовательности, точно используя математическую и специализированную терминологию и символику;
- правильно выполнил графическое изображение алгоритма и иные чертежи и графики, сопутствующие ответу;
- показал умение иллюстрировать теоретические положения конкретными примерами, применять их в новой ситуации при выполнении практического задания;
- продемонстрировал усвоение ранее изученных сопутствующих вопросов, сформированность и устойчивость используемых при ответе умений и навыков;
- отвечал самостоятельно без наводящих вопросов учителя.
- оценка «4» выставляется, если ответ имеет один из недостатков:
- в изложении допущены небольшие пробелы, не исказившие логического и информационного содержания ответа;
- нет определенной логической последовательности, неточно используется математическая и специализированная терминология и символика;
- допущены один-два недочета при освещении основного содержания ответа, исправленные по замечанию учителя;
- допущены ошибка или более двух недочетов при освещении второстепенных вопросов или в выкладках, легко исправленные по замечанию или вопросу учителя.

- оценка «3» выставляется, если:

- неполно или непоследовательно раскрыто содержание материала, но показано общее понимание вопроса, имелись затруднения или допущены ошибки в определении понятий, использовании терминологии, чертежах, блок-схем и выкладках, исправленные после нескольких наводящих вопросов учителя;
- ученик не справился с применением теории в новой ситуации при выполнении практического задания, но выполнил задания обязательного уровня сложности по данной теме,
- при знании теоретического материала выявлена недостаточная сформированность основных умений и навыков.

- оценка «2» выставляется, если:

- не раскрыто основное содержание учебного материала;
- обнаружено незнание или непонимание учеником большей или наиболее важной части учебного материала,

- допущены ошибки в определении понятий, при использовании терминологии, в чертежах, блок-схем и иных выкладках, которые не исправлены после нескольких наводящих вопросов учителя.

- оценка «1» выставляется, если:

- ученик обнаружил полное незнание и непонимание изучаемого учебного материала или не смог ответить ни на один из поставленных вопросов по изучаемому материалу.

Оценка самостоятельных и проверочных работ по теоретическому курсу

Оценка "5" ставится в следующем случае:

- работа выполнена полностью;
- при решении задач сделан перевод единиц всех физических величин в "СИ", все необходимые данные занесены в условие, правильно выполнены чертежи, схемы, графики, рисунки, сопутствующие решению задач, сделана проверка по наименованиям, правильно записаны исходные формулы, записана формула для конечного расчета, проведены математические расчеты и дан полный ответ;
- на качественные и теоретические вопросы дан полный, исчерпывающий ответ литературным языком с соблюдением технической терминологии в определенной логической последовательности, учащийся приводит новые примеры, устанавливает связь между изучаемым и ранее изученным материалом по курсу информатики, а также с материалом, усвоенным при изучении других предметов, умеет применить знания в новой ситуации;
- учащийся обнаруживает верное понимание физической сущности рассматриваемых явлений и закономерностей, законов и теорий, дает точное определение и истолкование основных понятий, законов, теорий, а также правильное определение физических величин, их единиц и способов измерения.

Оценка "4" ставится в следующем случае:

- работа выполнена полностью или не менее чем на 80 % от объема задания, но в ней имеются недочеты и несущественные ошибки: правильно записаны исходные формулы, но не записана формула для конечного расчета; ответ приведен в других единицах измерения.
- ответ на качественные и теоретические вопросы удовлетворяет вышеперечисленным требованиям, но содержит неточности в изложении фактов, определений, понятий, объяснении взаимосвязей, выводах и решении задач;
- учащийся испытывает трудности в применении знаний в новой ситуации, не в достаточной мере использует связи с ранее изученным материалом и с материалом, усвоенным при изучении других предметов.

Оценка "3" ставится в следующем случае:

- работа выполнена в основном верно (объем выполненной части составляет не менее 2/3 от общего объема), но допущены существенные неточности; пропущены промежуточные расчеты.

- учащийся обнаруживает понимание учебного материала при недостаточной полноте усвоения понятий и закономерностей;
- умеет применять полученные знания при решении простых задач с использованием готовых формул, но затрудняется при решении качественных задач и сложных количественных задач, требующих преобразования формул.

Оценка "2" ставится в следующем случае:

- работа в основном не выполнена (объем выполненной части менее 2/3 от общего объема задания);
- учащийся показывает незнание основных понятий, непонимание изученных закономерностей и взаимосвязей, не умеет решать количественные и качественные задачи.

Оценка "1" ставится в следующем случае: работа полностью не выполнена.

Для письменных работ учащихся по алгоритмизации и программированию:

- оценка «5» ставится, если:

- работа выполнена полностью;
- в графическом изображении алгоритма (блок-схеме), в теоретических выкладках решения нет пробелов и ошибок;
- в тексте программы нет синтаксических ошибок (возможны одна-две различные неточности, описки, не являющиеся следствием незнания или непонимания учебного материала).

- оценка «4» ставится, если:

- работа выполнена полностью, но обоснования шагов решения недостаточны (если умение обосновывать рассуждения не являлось специальным объектом проверки);
- допущена одна ошибка или два-три недочета в чертежах, выкладках, чертежах блок-схем или тексте программы.

- оценка «3» ставится, если:

- допущены более одной ошибки или двух-трех недочетов в выкладках, чертежах блок-схем или программе, но учащийся владеет обязательными умениями по проверяемой теме.

- оценка «2» ставится, если:

- допущены существенные ошибки, показавшие, что учащийся не владеет обязательными знаниями по данной теме в полной мере.

- оценка «1» ставится, если:

- работа показала полное отсутствие у учащегося обязательных знаний и умений по проверяемой теме.

Практическая работа на ЭВМ оценивается следующим образом:

- оценка «5» ставится, если:

- учащийся самостоятельно выполнил все этапы решения задач на ЭВМ;
- работа выполнена полностью и получен верный ответ или иное требуемое представление результата работы;

- оценка «4» ставится, если:

- работа выполнена полностью, но при выполнении обнаружилось недостаточное владение навыками работы с ЭВМ в рамках поставленной задачи:
- правильно выполнена большая часть работы (свыше 85 %), допущено не более трех ошибок;
- работа выполнена полностью, но использованы наименее оптимальные подходы к решению поставленной задачи.

- оценка «3» ставится, если:

 - работа выполнена не полностью, допущено более трех ошибок, но учащийся владеет основными навыками работы на ЭВМ, требуемыми для решения поставленной задачи.

- оценка «2» ставится, если:

- допущены существенные ошибки, показавшие, что учащийся не владеет обязательными знаниями, умениями и навыками работы на ЭВМ или значительная часть работы выполнена не самостоятельно.

- оценка «1» ставится, если:

- работа показала полное отсутствие у учащихся обязательных знаний и навыков практической работы на ЭВМ по проверяемой теме.

Тест оценивается следующим образом:

«5» - 86-100% правильных ответов на вопросы;

«4» - 71-85% правильных ответов на вопросы;

«3» - 51-70% правильных ответов на вопросы;

«2» - 0-50% правильных ответов на вопросы.